- 1 GLC FCS10: a global 10-m land-cover dataset with a fine classification system from Sentinel-1 - 2 and Sentinel-2 time-series data in Google Earth Engine - 3 Xiao Zhang 1,2, Liangyun Liu 1,2,3*, Tingting Zhao 1,4, Wenhan Zhang 1,2,3, Linlin Guan 1,2, Ming Bai 1,5, and Xidong - 4 Chen 6 - 5 1 International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China. - 6 2 Key Laboratory of Digital earth Science, Aerospace information Research institute, Chinese Academy of Sciences, - 7 Beijing, 100094, China. - 8 3 School of electronic, electrical and communication engineering, University of Chinese Academy of Sciences, - 9 Beijing, 100049, China. - 10 4 School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China. - 5 College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China. - 12 6 Future Urbanity & Sustainable environment (FUSE) Lab, the University of Hong Kong, Hong Kong, 999007, - 13 China. 14 Corresponding author: Liangyun Liu (<u>liuly@radi.ac.cn</u>) #### Abstract 16 The continuous development of remote sensing techniques provides ample opportunities for high-17 resolution land-cover mapping. Although global 10-m land-cover products have made considerable progress 18 over past few years, their simple classification system makes it difficult to meet the needs of diverse applications. 19 In this work, we propose a hierarchical land-cover mapping framework to produce a novel global 10-m land-20 cover dataset with a fine classification system (called GLC FCS10) using Sentinel-1 and Sentinel-2 time-series 21 observations from 2023. First, the globally distributed training samples are hierarchically obtained from 22 multisource prior products after applying a series of refinements. Then, a combination of hierarchical land-cover mapping, local adaptive modeling, and multisource features is used to produce land-cover maps for each 5 × 23 24 5 geographical tile. Next, using 56121 globally distributed validation samples and a third-party validation 25 dataset (LCMAP Val), the GLC FCS10 is assessed. The GLC FCS10 achieves an overall accuracy of 83.16% 26 and a kappa coefficient of 0.789 globally and an overall accuracy of 85.09% in the United States. Meanwhile, 27 comparisons with five released 10- or 30-m land-cover products also demonstrate that GLC FCS10 has higher 28 accuracy and captures more diverse land-cover information than three of the released global 10-m land-cover 29 products. In summary, the novel GLC FCS10 land-cover maps can provide important support for high-30 resolution land-cover related research and applications. The GLC FCS10 can be freely access via 31 https://doi.org/10.5281/zenodo.14729665 (Liu and Zhang, 2025). 32 #### 1. Introduction Land-cover information is a vital component of global climate change research and plays an important role in climate change mitigation, biodiversity protection, and global food security (Foley et al., 2005; Liu et al., 2021). With advancements in satellite techniques and computational and storage capabilities, global land-cover mapping has made substantial progresses. A series of global land-cover products, ranging from 1-km to 10-m resolutions, has been continuously released (Giri et al., 2013; Liu et al., 2021). Recently, Wang et al. (2023) reviewed the characteristics of global land-cover products and found that land-cover mapping has evolved from coarse to high spatial resolution. Currently, four global 10-m land-cover products are available, including FROM_GLC10 (Gong et al., 2019), ESRI LC (Karra et al., 2021), European Space Agency (ESA) WorldCover (Buchhorn et al., 2020), and Dynamic World (Brown et al., 2022). However, all of these products use a simple classification system, which limits their applicability for specific and fine applications (Zhang et al., 2021). Meanwhile, the work of Zhao et al. (2023) explained that FROM_GLC10, ESRI LC, and ESA WorldCover have relatively low consistency and accuracy. Thus, developing an accurate global 10-m land-cover dataset with a fine classification system is still necessary. The diversity of land-cover types depends on the training samples, and there are two options to generate a globally distributed training pool—visual interpretation and automated derivation from prior products (Zhang and Roy, 2017; Zhang et al., 2021). Visual interpretation means that experts or volunteers interpreted the land-cover information through high-resolution imagery, Google Earth Streetview photos, or other auxiliary datasets. For example, the training samples in FROM GLC10 were derived from expert interpretations and contained approximately 93,000 sites worldwide (Gong et al., 2013), and the ESA WorldCover used 20 trained experts to collect approximately 141,000 training locations from the Geo-Wiki engagement platform (Buchhorn et al., 2020). Obviously, training sites from the "visual interpretation" option can ensure high quality (Ban et al., 2015), however, the problems of cost and time are not to be ignored. The diversity of the land-cover classification system also relies on the experts' prior knowledges. The "automated derivation from prior products" option generates the training sites from prior land-cover datasets after taking some refinements or validations (Radoux et al., 2014; Zhang et al., 2021; Zhang et al., 2024c). For example, the training areas in the GLC FCS30 were collected from a combination of timeseries MCD43A4 surface reflectance data and CCI LC land-cover products after using some spatiotemporal purification methods, and these automatically derived training samples supported high-accuracy land-cover mapping with overall accuracy of 82.5% (Zhang et al., 2021). The automated option enables more efficient collection of globally confident training samples; however, the classification errors of prior land-cover products were also easier to transfer into the derived training samples (Zhang and Roy, 2017). Therefore, it is critical to avoid transferring error into the training samples. Another great challenge in global land-cover mapping lies in the choice of suitable methodologies. Currently, the vast majority of global land-cover mapping ignores the complexity and sparsity of various land-cover types and completes a mapping project with a single classification model (Friedl et al., 2010; Gong et al., 2013), which leads to considerable uncertainties in sparse (e.g., impervious surfaces) or complex (e.g., wetlands and shrubland) land-cover types (Karra et al., 2021; Zhang et al., 2021; Zhao et al., 2023). Several measures were taken to improve the performance of large-area land-cover mapping, such as: local adaptive modeling (Defourny et al., 2018; Li et al., 2023; Zhang and Roy, 2017; Zhang et al., 2021), hierarchical land-cover mapping (Chen et al., 2015; Sulla-Menashe et al., 2019), or integration of multisource datasets (Yu et al., 2014; Zhang et al., 2020). Local adaptive modeling first split study area into many local areas and further trained corresponding classification models within each local region to improve the ability to capture regional characteristics. Zhang and Roy (2017) found that local adaptive modeling had higher accuracy than single global land-cover modeling, however, it also needs enough training samples to support regional modeling. Hierarchical land-cover mapping divides the land surface into various land-cover layers, and some complicated land-cover layers may need to be treated independently. Taking wetlands as an example, most global land-cover products perform poorly on wetlands because of their varied spectral characteristics and complicated spatiotemporal features (Buchhorn et al., 2020; Gong et al., 2019; Zhang et al., 2021). The GlobeLand30 achieved 74.87% accuracy with wetlands because this land-cover type was treated independently (Chen et al., 2015). Hierarchical land-cover mapping gives more attention to complicated land-cover types by importing more prior knowledge (Chen et al., 2015) or adding sufficient high-confidence training samples (Zhang et al., 2023b). many previous works have demonstrated the integration of multisource datasets, such as optical imagery (Landsat and Sentinel-2) and Sentinel-1 single-aperture radar (SAR) data to improve the identification of impervious surfaces (Zhang et al., 2020), wetlands (Zhang et al., 2023b), forests (Tang et al., 2023), or croplands (Blickensdörfer et al., 2022). Therefore, multisource data effectively enhances land-cover mapping. The free access to Sentinel imagery and to the powerful cloud computation platform provide ample opportunity for global land-cover mapping at 10 m. In this work, we developed an accurate and novel global 10-m land-cover product (called GLC_FCS10) containing 30 fine land-cover types from Sentinel-1 and Sentinel-2 time-series imagery. To achieve this goal, we propose: 1) a hierarchical land-cover mapping framework to decrease the uncertainties of impervious surfaces and wetlands; 2) to combine the prior multisource land-cover datasets and the metric centroid to automatically generate a globally distributed and high-confidence 10-m training pool; 3) to integrate time-series Sentinel-2 optical and Sentinel-1 SAR data for producing the new GLC_FCS10 on the GEE platform; 4) to comprehensively compare the developed GLC FCS10 with several previous products. ### 2. Datasets # 2.1 Satellite imagery All available Sentinel-2 surface reflectance imagery for 2023 were atmospherically corrected using the Sen2Cor tool, and the corrected images were then stored on the GEE platform. This imagery contains 12 spectral bands from visible to shortwave infrared and a revisiting period of 5 days (Berger et al., 2012; Radeloff et al., 2024). In this work, the four 10-m visible and near-infrared bands and six 20-m red edges and shortwave infrared bands were used, while the two 60-m bands of aerosols and water vapor were excluded to minimize
atmospheric effects. The six 20-m reflectance imagery bands were resampled to 10-m using the bilinear resampling method (Berger et al., 2012). Any poor-quality pixels, including clouds and shadows, were masked using the quality control band (QA60) and the cloud probability product. Sentinel-1 has a dual-polarization (VV and VH) C-band SAR instrument with a revisiting period of 6 days after launching of Sentinel-1B (Torres et al., 2012). In this work, all Sentinel-1 imagery for 2023 were obtained through the GEE platform, which have been preprocessed through radiometric calibration, thermal noise removal, and terrain correction, and further resampled their resolution of 5 m \times 20 m into 10 m \times 10 m using Sentinel-1 Toolbox when archived on the GEE platform. Some previous works have demonstrated that topographical data can provide auxiliary and useful information in land-cover mapping (Zhang et al., 2023b), currently, global 10 m digital elevation model (DEM) is not yet available. In this work, we used the 30-m ASTER GDEM, which has low vertical error of 0.7 m (<u>Tachikawa et al., 2011</u>), to obtained the elevation, slope, and aspect after bilinear resampling to 10 m × 10 m. #### 2.2 Prior land-cover products ### 2.2.1 Impervious surface products Impervious surfaces are characterized by sparse spatial distribution and complicated spectral and spatial heterogeneities; thus, it should be treated independently Its training samples are generated from five previous products: 1) The Global 30-m Impervious Surface Dynamic (GISD30) dataset, developed with the combination of spectral generalization and sample migration during 1985-2020 with the interval of 5-years, achieves a fulfilling accuracy of 90.1% (Zhang et al., 2022). 2) The Global Impervious Surface Area (GISA 2.0) dataset, produced by considering the inconsistency among four existing products, is an annual time-series impervious surface maps during 1985-2018 with the F1-score of 0.935 (Huang et al., 2022). 3) The 10 m impervious surface layer in ESA WorldCover dataset was generated by the supervision classification from time-series Sentinel-1 and Sentinel-2 imagery (Zanaga et al., 2021). It was demonstrated to achieve the great performance with producer's accuracy of 82.99% (Zhao et al., 2023). 4) The impervious surface layer in ESRI Land Cover is developed from time-series Sentinel-2 imagery and the deep-learning (Karra et al., 2021), and achieve high producer's accuracy of 88.42% (Zhao et al., 2023) .5) Global urban boundary dataset (GUB) is generated by the combination of cellular-automata and morphological approach, and shows a good agreement with the results from human interpretation (Li et al., 2020). **Table 1**. The characteristics of prior land-cover products. | Category | Dataset name | Resolution | Year | Coverage | Reference | |--------------------|----------------------------|------------|--------------------|----------|------------------------| | | GISD30 | 30 | 1985-2020 | Global | Zhang et al. (2022) | | | GISA 2.0 | 30 | 1985-2019 | Global | Huang et al. (2022) | | Impervious surface | Imp-ESA_LC | 10 | 2021 | Global | Zanaga et al. (2021) | | Surface | Imp-ESRI_LC | 10 | 2023 | Global | Karra et al. (2021) | | | GUB | - | 2020 | Global | Li et al. (2020) | | | GWL_FCS30D | 30 | 2000–2022 | Global | Zhang et al. (2024b) | | | National Wetland Inventory | 30 | 2019 United States | | Wilen and Bates (1995) | | Wetland | Global Mangrove Watch | 30 | 1996-2020 | Global | Bunting et al. (2022) | | wetiand | Global tidal flat | 30 | 2000-2022 | Global | Zhang et al. (2023a) | | | Global tidal marsh dataset | 10 | 2020 | Global | Worthington et al. | | | Global tidal marsh dataset | 10 | 2020 | Global | (2024) | | | GLC_FCS30D | 30 | 1985–2022 | Global | Zhang et al. (2024c) | | Land-cover | Global oil palm dataset | 30 | 1990–2021 | Global | Descals et al. (2024) | | | Global plantation map | 30 | 1982–2020 | Global | Du et al. (2022) | ### 2.2.2 Wetland products Because almost all global land-cover products have large uncertainties in wetlands identification (Zhang et al., 2023b), wetlands should also be treated as independent land-cover type. The wetland training samples were also derived from three existing wetland thematic products, including: 1) the GWL_FCS30D is an annual global wetland products containing 8 wetland subcategories (5 inland and 3 coastal wetland subcategories), and achieves an overall accuracy of $86.95 \pm 0.44\%$ (Zhang et al., 2024b). 2) The NWI (National Wetland Inventory) is national wetland thematic products covering the whole United States and containing 8 wetland subcategories (Wilen and Bates, 1995). 3) The GMW (Global Mangrove Watch) and global tidal marsh products provide the spatial patterns of mangrove and salt marsh with the overall accuracy of 87.4% and 85% (Bunting et al., 2022; Worthington et al., 2024). #### 2.2.3 GLC_FCS30D land-cover dynamic products Except for wetlands and impervious surfaces, training samples for the remaining non-wetland natural land-cover types are generated from the GLC_FCS30D dataset. It was developed from the combination of a continuous change detection algorithm with an adaptive updating strategy and had 80.88% (±0.27%) accuracy covering the period of 1985–2022 with 35 fine land-cover subcategories. The dataset has high temporal stability in the European Union and United States (Zhang et al., 2024c). In this work, we leverage this dynamic product to generate confident training samples for non-wetland natural land covers, as described in the Section 3.1. ### 2.2.4 Tree-cover cropland datasets It is noteworthy that the tree-cover cropland was only mapped in certain regions rather than globally in the GLC_FCS30D (Zhang et al., 2021; Zhang et al., 2024c); thus, global oil palm and plantation datasets are also used to identify tree-cover cropland. The global oil palm dataset is a time-series covering 1990–2020 and exceeds 91% accuracy for industrial plantations and 71% accuracy for smallholders (Descals et al., 2024). A global plantation map was generated by combining some prior global plantation products and the LandTrendr method, and has an F1 score of 86.83% with ±5 years tolerance (Du et al., 2022). ### 3. Methodology To achieve high quality with detailed categorizations in global 10-m land-cover mapping, a hierarchical land-cover mapping methodology has been proposed. It leverages prior land-cover products and time-series satellite observations. Figure 1 presents a flowchart of the proposed method, which involves four procedures: generating hierarchical and globally distributed training samples from prior products, compositing multisource and multitemporal training features from time-series Sentinel 1&2 imagery, hierarchical land-cover mapping using local adaptive classifications, and accuracy assessment and cross-comparisons. Figure 1. The flowchart of the proposed method for hierarchical land-cover mapping. #### 3.1 The description of the classification system In this work, we develop a novel global 10-m land-cover dataset with a fine classification system (FCS). Table 2 presents the main characteristics of this FCS and its correspondence with the basic classification system. It contains 30 fine land-cover types and emphasizes the forest- and wetland-related subcategories, which are further subdivided into 10 and 7 subcategories, respectively. The diversity of this fine classification system results from importing the GWL_FCS30D (Zhang et al., 2024b) and GLC_FCS30D (Zhang et al., 2024c) products. **Table 2**. The characteristics of the fine classification system in the GLC FCS10. | Basic classification system | Fine classification system | Id | |-----------------------------|----------------------------|----| | | Herbaceous rainfed cropland | 11 | |------------------------|--|-----| | Cropland | Tree or shrub covered rainfed cropland (orchard, oil palm) | 12 | | Cropiana | Irrigated cropland | 20 | | | Closed evergreen broadleaved forest | 51 | | | Open evergreen broadleaved forest | 52 | | | Closed deciduous broadleaved forest | 61 | | | Open deciduous broadleaved forest | 62 | | | Closed evergreen needleleaved forest | 71 | | Forest | Open evergreen needleleaved forest | 72 | | | Closed deciduous needleleaved forest | 81 | | | Open deciduous needleleaved forest | 82 | | | Closed mixed-leaf forest | 91 | | | Open mixed-leaf forest | 92 | | | Evergreen shrubland | 121 | | Shrubland | Deciduous shrubland | 122 | | Grassland | Grassland | 130 | | Tundra | Lichens and mosses | 140 | | | Swamp | 181 | | | Marsh | 182 | | | Lake/river flat | 183 | | Wetland | Saline | 184 | | | Mangrove forest | 185 | | | Salt marsh | 186 | | | Tidal flat | 187 | | I | Urban impervious surfaces | 191 | | Impervious surfaces | Rural impervious surfaces | 192 | | Bare areas | Sparse vegetation | 150 | | Date areas | Bare areas | 200 | | Water | Water | 210 | | Permanent ice and snow | Permanent ice and snow | 220 | ### 3.2 Generating hierarchical training samples To ensure quality in global 10-m land-cover mapping, land surfaces are hierarchically divided into impervious surface, wetland, and non-wetland natural land-cover types. Their corresponding training samples also need to be generated independently. Because training sample quality greatly affects land-cover mapping performance (Foody and Arora, 2010; Zhang and Roy, 2017), generating confident and globally distributed training samples is a prerequisite for generating the GLC_FCS10. #### 3.2.1 Training areas of impervious surfaces Regarding the training samples of impervious surfaces, we combine four prior global 10-m or 30-m impervious surface products (GISA 2.0, GISD30, Imp-ESA_LC, and Imp-ESRI_LC) and one urban boundary dataset (GUB) to automatically generate the training samples. Specifically, because the previous studies have demonstrated high-accuracies of three
impervious surface products (Huang et al., 2022; Zanaga et al., 2021; Zhang et al., 2022) and high producer's accuracy of Imp-ESRI_LC (Zhao et al., 2023), the areas marked as impervious surfaces by all four products (GISD30-2020, GISA2.0-2019, Imp-ESA_LC-2021, and Imp-ESRI_LC-2023) are selected as candidate areas for generating the training samples (*TrainCanArea_imp*) in Eq. (1). $$TrainCanArea_{imp} = GISD30 \cap GISA2.0 \cap (Imp-ESA_{LC}) \cap (Imp-ESRI_LC)$$ (1) Afterward, we further consider the uneven distribution of rural and urban impervious surfaces as well as their spectral variability. If random sampling is used to obtain training samples from the *TrainCanArea_imp*, rural impervious surfaces are underrepresented due to their sparse distribution, thus, the GUB urban boundary dataset for 2020 is further used to divide the *TrainCanArea_imp* into urban (*TrainCanArea_urban*) and rural areas 186 (TrainCanArea rural). Beyond the confident impervious surface areas, it is equally important to identify high-quality natural land-cover types (Zhang et al., 2024a). To avoid confusion between natural land-cover types and impervious surfaces, the maximum impervious surface boundary (MaxBound_imp) is also generated. The training samples for natural land-cover types should be located outside of the MaxBound_imp. To determine MaxBound_imp, the union of the four products is applied as: $$MaxBound_{imp} = GISD30 \cup GISA2.0 \cup (Imp-ESA_{LC}) \cup (Imp-ESRI_{LC})$$ (2) #### 3.2.2 Training areas of wetland In this work, wetlands are divided into four inland subcategories (swamp, marsh, river/lake flats, and saline) and three coastal wetland subcategories (mangrove, salt marsh, and tidal flats in **Table 2**). Because coastal wetlands have a more pronounced zonation, and the global coastal wetland mapping have make great progresses while the works of global inland wetland mapping is still sparse (<u>Wang et al., 2023</u>), thus, the generation of wetland training candidate areas further distinguishes between inland and coastal wetlands. The time-series GWL_FCS30D wetland product covering the period of 2000–2022 is used to derive the inland wetland training candidate areas (Zhang et al., 2024b). Because temporally stable areas achieve higher accuracy (Yang and Huang, 2021), a temporally stable analysis is applied to the GWL_FCS30D, and only those stable areas where wetland subcategories do not change during 2000–2022 are retained (yielding the training area, TrainCanArea_Inwet). Then, because adjacent land-cover areas are easier to suffer from the higher misclassifications (Radoux et al., 2014) and to the impact of the satellite geolocation error (Zhang and Roy, 2017), a spatial filter with a local window of 3 pixels × 3 pixels is applied to TrainCanArea_Inwet to retain spatially homogeneous areas as the training areas. Further, the integration of multiple wetland products improves sample quality, but there are few high-quality wetland products that have been publicly shared. Only the National Wetland Inventory for 2019 is imported to optimize the swamp and marsh land-cover types in TrainCanArea_Inwet over the United States. The areas identified as swamp and marsh in TrainCanArea_Inwet and the National Wetland Inventory are retained. The National Wetland Inventory does not identify river/lake flats or saline subcategories. As for the three coastal wetland subcategories, their training areas are generated from the combination of GWL_FCS30D and three coastal wetland products (GMW, GTF30, and GSM10 in **Table 1**). We identify temporally stable coastal wetland areas from GWL_FCS30D, GMW, and GTF30 through time-series analysis and label them GWL_stable, GMW_stable, and GTF_stable. Then, we intersect GWL_stable with GMW_stable to generate mangrove forest training areas and intersect GWL_stable with GTF_stable to generate tidal flat training areas. Next, as the GSM10 only provides salt marsh maps in 2020, the salt marsh training areas are selected as the intersection between GWL_stable and GSM10. The mangrove forest, tidal flat, and salt marsh training areas are grouped as *TrainCanArea Cowet*. Last, the maximum wetland boundary $(MaxBound_{wet})$ is also necessary for the subsequent identification of training areas for non-wetland natural land-cover types. $MaxBound_{wet}$ is determined as the union of the five global wetland products: $$MaxBound_{wet} = GWL_FCS30D \cup NWI \cup GMW \cup GTF30 \cup GSM10$$ (3) # 3.2.3 Training areas of non-wetland natural land-covers Many previous works have emphasized that these spatiotemporally stable areas always performed higher mapping accuracy (Zhang and Roy, 2017; Zhang et al., 2024c). In this work, the time-series global 30-m land-cover dynamic product (GLC_FCS30D), covering the period of 1985–2022 is used. The product uses a classification system like the one used in this work. Specifically, three measures are taken to identify spatiotemporally stable areas of non- wetland natural land-cover types from GLC_FCS30D: 1) A time-series consistency analysis is applied to the GLC_FCS30D, and only stable areas during 1985–2022 will be retained as $TrainCanArea_NLCs$. 2) The $MaxBound_{imp}$ and $MaxBound_{wet}$ are imported to mask the $TrainCanArea_NLCs$, i.e., the training areas for non-wetland natural land-cover types should be located outside of $MaxBound_{imp}$ and $MaxBound_{wet}$. The aim of this step is to minimize confusion between non-wetland natural land-cover types and two other land-cover types. 3) A morphological erosion filter with a local window of 3 pixels \times 3 pixels is used to find the spatially homogeneous areas for non-wetland natural land-cover types. As mentioned in Section 2.2.4, the training areas for tree-cover cropland (oil palm, orchards, etc.) from the GLC_FCS30D do not cover the globe. These training areas are therefore divided into herbaceous rainfed cropland and tree- or shrub-cover cropland. Because the global oil palm and global plantation datasets provide the plantation years of oil palm and orchards at 30 m, we overlap the training areas of rainfed cropland, oil palm, and orchard plantation from the global plantation dataset to extract the training areas for tree-cover cropland. Then, to minimize error, the tree-cover cropland training areas are further filtered using a local window of 3 pixels × 3 pixels to ensure spatial homogeneity of tree-cover cropland training areas. #### 3.2.4 Generating a globally distributed training pool from stratified sampling Although we take a series of measures to ensure training area quality (including: *TrainCanArea_urban*, *TrainCanArea_rural*, *TrainCanArea_Inwet*, *TrainCanArea_Cowet*, and *TrainCanArea_NLCs*), how to generate training samples from the training areas needs to address the following two aspects. First, the distribution and balance of training samples greatly affect the subsequent land-cover classification (Ghorbanian et al., 2020; Jin et al., 2014; Mellor et al., 2015; Pelletier et al., 2017; Zhu et al., 2016). There are two options to allocate the sample distribution: equal or area-fraction allocation (Zhang et al., 2021). Equal distribution means that all land-cover types have the same number of training samples, i.e., the sample sizes of sparse land covers will be augmented while those of the abundant land covers will be suppressed. In contrast, area-fraction distribution allocates the sample size according to the land-cover area of each type, that is, abundant land covers have larger sample sizes while sparse land-cover types have smaller sample sizes (Zhu et al., 2016). Because impervious surfaces and wetlands are sparser than natural land-cover types and are independently generated, equal-distribution allocation is suitable to enhance the training samples' ability to characterize these two land-cover types. As for the non-wetland natural land-covers, the area-fraction allocation is more appropriate for the non-wetland natural land-cover types because we want to optimize results for all non-wetland natural land-cover types rather than a single land-cover type. Meanwhile, to avoid sample size imbalance in the area-fraction allocation, maximum and minimum sample sizes of 8000 pixels and 600 pixels are chosen for the abundant and sparse land-cover types, respectively (suggested by the work of Zhu et al. (2016)). Second, most high-quality training samples (except for those for impervious surfaces) are derived from the 30-m training areas, so there is also a need to reduce the 30-m training samples to 10-m samples to achieve a global 10-m land-cover map. In this work, the metric centroid method is adopted, which had been used to downscale 500-m training samples from MCD12Q1 to 30-m in the work of Zhang and Roy (2017). Specifically, as each 30-m pixel corresponds to 3×3 10-m pixels, we first find the centroid from these nine pixels as $P_{centroid}$ through spectral averaging, and then the point with the smallest absolute distance with $P_{centroid}$ was chosen as the optimal downscaled 10-m sample point [Eq. (4)]. $$P_{i} = \operatorname{argmin}(|\boldsymbol{\rho}_{P_{i}} - \boldsymbol{\rho}_{P_{centroid}}|), \boldsymbol{\rho}_{P_{centroid}} = \frac{1}{9} \sum_{j=1}^{9} \frac{\rho_{P_{j}}}{9}$$ (4) Where ρ_{P_i} is the spectra value of composited Sentinel-2 training features (See Section 3.3) at pixel P_i . If more than one point in the nine pixels has the same minimum absolute distance, then we pick randomly from among them. 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285286 287 288 289 290 291292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 #### 3.3 Compositing multisourced training features In addition to high-confidence training samples, how to generate these multisource training features is also important (Dong et al., 2015; Yang and Huang, 2021). In this work, we composite multitemporal optical and SAR information from Sentinel-1
and Sentinel-2 time-series observations. First, because of the overlapping orbits of the satellites and the effects of clouds and shadows, there are substantial differences in the clear-sky observations in different regions. Compositing methods help to obtain dimensionally consistent spectral-phenological features. The percentile-based statistical multitemporal compositing method attracts attention because of its robustness, efficiency, and simplicity (Azzari and Lobell, 2017). This method rearranges intra-annual time-series reflectance according to mathematical magnitude and take the corresponding quartiles to reflect the phenological variation of the time-series (Hansen et al., 2014). Thus, in percentile-based compositing, time-series Sentinel-2 images are composited into the 10th, 30th, 50th, 70th, and 90th percentiles for their 10 optical bands from visible to shortwave infrared and three typical indexes [NDVI, NDWI, and LSWI in Eq. (5)]. The 10th and 90th percentiles are selected to represent the poles of time-series variations and also suppress the effects of residual cloud and shadow, and the other three percentiles can partly reflect the phenological variations (Xie et al., 2020). Meanwhile, another major advantage of 10-m Sentinel-2 imagery is that it provides clearer textural features, so we generate time-series texture features from the five percentiles in the NIR bands using the gray level co-occurrence matrix. Only the texture features in the NIR band are extracted to avoid redundancy, because of the texture similarity within different spectral bands (Rodriguez-Galiano et al., 2012). $$NDVI = \frac{\rho_{NIR} - \rho_r}{\rho_{NIR} + \rho_r}, LSWI = \frac{\rho_{NIR} - \rho_{SWIR1}}{\rho_{NIR} + \rho_{SWIR1}} \text{ and } NBWI = \frac{\rho_{green} - \rho_{SWIR1}}{\rho_{green} + \rho_{SWIR1}}$$ (5) where ρ_{green} , ρ_r , ρ_{NIR} , ρ_{SWIR1} are the spectral bands of green, red, NIR, and SWIR1 in the Sentinel-2 imagery. Then, because SAR signals are sensitive to changes in surface water dynamics and spatial structure, it is also necessary to extract multitemporal SAR features from Sentinel-1 imagery (<u>Bullock et al., 2022; Dabrowska-Zielinska et al., 2018; Zhang et al., 2020</u>). The percentile-based composited method is also used to capture the time-series variabilities of VV and VH at the 10th, 30th, 50th, 70th, and 90th percentiles. In summary, a total of 10 SAR features are composited from time-series Sentinel-1 observations. Afterward, because some land-cover types are characterized by important topographic distribution (e.g., permanent snow and ice are clustered in high elevation areas, croplands and impervious surfaces usually locate on these flat areas), the topographical variables (slope, aspect and elevation), generated from the resampled ASTER GDEM dataset, are collected into the multisourced training features. It should be noted that some 5 ×5 geographical tiles do not have sufficient Sentinel-1 observational data in 2023 since Sentinel-1B is retired in 2022, the corresponding tiles use only Sentinel-2 and topographic data. ### 3.4 Hierarchical land-cover mapping A major advantage of hierarchical land-cover mapping is the ability to improve the characterization of complex land-covers with independent models. In this work, we first separate global land-cover types into impervious surfaces and natural land-cover types, then identify the wetlands from among the natural land-covers, and finally classify the remaining non-wetland natural land-cover types into 20 land-cover subcategories. #### 3.4.1 The separation of impervious surfaces and natural surfaces To separate impervious surfaces and natural surfaces, we rely on the globally distributed training samples (Section 3.2.4) and the combination of multitemporal optical and SAR features. Specifically, because we divide impervious surfaces training samples into rural and urban samples and design the equal distribution to enhance the training samples' ability to characterize impervious surfaces. The ratio of urban samples, rural samples, and natural surfaces is 1:1:1 for each 5×5 geographical tile. We split the globe into 984.5×5 geographical tiles, because some Science Science Data studies emphasized that the local adaptive modeling usually achieves better mapping accuracy than single land-cover global modeling (Zhang et al., 2021). Then, when building the training model for each 5×5 geographical tile, we also import training samples within their spatial neighborhood of 3×3 tiles to ensure spatial consistency over the adjacent tiles. Afterward, we can produce 9845×5 impervious surface and natural land cover maps using the local adaptive modeling strategy. In addition, although we divide the training samples into urban and rural samples, there is serious confusion between urban and rural areas in the classification maps because they share similar spectral and SAR characteristics. We therefore consider the two subcategories to be inseparable at the classification stage. Correspondingly, inspired by the work of Li et al. (2020) who used the cellular automata and morphological approaches to accurately capture urban boundaries, this method is also applied in this work to distinguish urban and rural impervious surfaces. The random forest classification model (including the later section 3.4.2 and 3.4.3) is selected. The random forest has some advantages over other traditional classifiers, such as managing high-dimensional data more efficiently, having higher robustness, being insensitive to parameter settings, and avoiding overfitting problems effectively (Belgiu and Drăgut, 2016; Breiman, 2001). In terms of its parameter settings, the random forest only has two adjustable parameters, and the variations of these two parameters have little effect on the performance of the random forest model (Du et al., 2015; Gislason et al., 2006), thus, the default parameter settings are applied to train the random forest models on the GEE platform. #### 3.4.2 The separation of wetland and non-wetland natural land-cover types In terms of how to identify the fine wetland subcategories from natural land-covers, we use the stratified wetland mapping algorithm to independently distinguish coastal wetlands and inland wetlands. Wetlands are divided into four inland and three coastal wetland subcategories (in **Table 2**), and equal-distribution sampling is used to enhance the training samples' ability to characterize wetlands. The approximate ratio of inland wetlands, coastal wetlands, and non-wetlands (including water body, forest, grassland, bare land, and others) is 4:3:5 in areas where they coexist. Then, because coastal wetlands have a more pronounced zonation, we can obtain their maximum coverage through the union of some previous coastal wetland products, as Eq. (6). $$MaxBound_{Cos\ wet} = GWL_FCS30D_Coastal \cup GMW \cup GTF30 \cup GSM10$$ (6) When building the wetland random forest classification models for each 5×5 geographical tile, we first train the coastal wetland classification model using the coastal wetland and non-wetland training samples within their spatial neighborhood of 3×3 tiles, and combine multisourced training features to identify the spatial distribution of coastal wetlands within the $MaxBound_{Cwet}$; i.e., all coastal wetland pixels should be within the $MaxBound_{Cwet}$, otherwise, they would be corrected. Afterward, the inland wetland and non-wetland training samples are used to train another random forest classification model, and the remaining natural land-cover types are further classified as four inland wetland subcategories and non-wetland natural land-cover types using the inland wetland classification model. #### 3.4.3 Mapping of non-wetland natural land-cover types After classifying the impervious surface and wetlands using the hierarchical land-cover mapping, we now need to classify the remaining non-wetland natural land-cover types. Like the previous mapping processes, the local adaptive random forest models are trained for each 5×5 geographical tile using the corresponding training samples within the spatial neighborhood of 3×3 tiles. The non-wetland natural land-cover types are classified through a combination of trained random forest models and multisource training features. Lastly, after overlapping the hierarchical maps for impervious surface, wetland, and non-wetland natural land-cover types, we can obtain 10-m land-cover maps with a fine classification system. #### 3.5 Accuracy assessment and cross-comparison To comprehensively assess the performance of our developed GLC_FCS10 products, a globally distributed validation dataset and one third-party validation dataset are collected to quantify the accuracy metrics. First, the global validation dataset, guided by the work of (Zhao et al. (2023), is collected through stratified random sampling and visual interpretation from high-resolution remote sensing imagery in 2023. Figure 2 illustrates the spatial distribution of the global validation dataset; it contains 56121 globally distributed validation points and covers 16 land-cover types. Next, the Land Cover Monitoring, Assessment, and Projection Collection (LCMAP) validation dataset (called LCMAP_V), as a national third-party validation dataset, contains 16082 nationally distributed validation points during 1985–2021 (Stehman et al., 2021). In this work, the LCMAP_Val in 2021 is also updated to 2023 through visual interpretation. Afterward, the confusion matrix and four accuracy metrics are calculated, including: the overall accuracy (O.A.) and kappa coefficient (measuring the comprehensive performance) and the producer accuracy (P.A.), and the user accuracy (U.A.), which measure the commission and omission errors for each land-cover type to quantify the accuracy of GLC_FCS10 (Foody and Arora, 2010; Liu et al., 2007;
Nelson et al., 2021). Figure 2. The spatial distribution of global validation samples containing 16 land-cover types in 2023. In addition, to qualitatively investigate the performance of GLC_FCS10, three global 10-m land-cover products [ESRI_LC (Karra et al., 2021), ESA WorldCover (Zanaga et al., 2021), and FROM_GLC10 (Gong et al., 2019)], and one 30-m land-cover product [GLC_FCS30 (Zhang et al., 2021)] are collected as comparative products. None of these five data products have been updated to 2023. Their latest available data will be collected for our comparative analysis. ### 4. Results and discussions #### 4.1 Overview of the GLC FCS10 maps Figure 3 illustrates the spatial distribution of the GLC_FCS10 land-cover maps with 30 fine land-cover types in 2023. Overall, it accurately characterizes global land-cover patterns, i.e., forests concentrate in tropical rainforest regions and cold temperate forest zones in the northern hemisphere, cropland is found in low-lying plains areas such as the North China Plain, Central Plains of the United States, Central Eurasia, and bare land and grassland are distributed in arid and semiarid areas. Meanwhile, because a characteristic of the GLC_FCS10 is its diverse classification system, we can see that broadleaved forests are found in low- and medium-altitude regions, while needle-leaved forests are distributed in cold temperate zones as well as in high-altitude areas. Figure 3. Spatial distribution of the 30 fine land-cover types in GLC_FCS10 land-cover maps in 2023. #### 4.2 Accuracy assessment #### 4.2.1 Global-scale accuracy assessment Table 3 presents the confusion matrix between GLC_FCS10 and the 56121 globally distributed validation points for 10 major land-cover types (corresponding to the basic classification system in Table 2). Overall, GLC_FCS10 achieves an O.A. of 83.16% and a kappa coefficient of 0.789. For specific land-cover types, permanent snow and ice, water bodies, forest, impervious surfaces, and cropland perform the best, with the corresponding U.A. and P.A. values approximating or exceeding 90%. Their high accuracies stem from the distinct spectral properties inherent to water bodies and permanent ice and snow, the abundant coverage of cropland and forest, and hierarchical land-cover mapping for impervious surfaces. However, shrubland, grassland, tundra, and wetlands suffer obvious misclassifications, in which the shrubland has the lowest U.A. of 67.04% and wetland has the lowest P.A. of 53.69%. There are considerable confusions between shrubland, grassland, and bare areas because they share similar spectral characteristics and coexist in arid and semiarid areas. Wetlands have the lowest P.A. due to the confusions between wetlands, water bodies, forest, and grassland. Wetlands have complicated and heterogeneous spectral and temporal variations, thus, the swamp subcategory is easily confused with forest, and the marsh subcategory shares spectral characteristics with grasslands (Zhang et al. (2023b). **Table 3**. The confusion matrix between GLC_FCS10 and the globally distributed validation dataset for 10 major land-cover types. | | Crop | Forest | Shrub | Grass | Tundra | Wetland | Impervious | Barren | Water | Ice-Snow | Total | U.A. | |------------|-------|--------|-------|-------|--------|---------|------------|--------|-------|----------|-------|-------| | Crop | 8442 | 339 | 588 | 768 | 0 | 53 | 39 | 46 | 9 | 0 | 10284 | 82.09 | | Forest | 161 | 18342 | 1191 | 189 | 0 | 250 | 2 | 12 | 4 | 0 | 20151 | 91.02 | | Shrub | 190 | 701 | 4091 | 922 | 12 | 72 | 4 | 109 | 1 | 0 | 6102 | 67.04 | | Grass | 673 | 255 | 275 | 5817 | 33 | 170 | 7 | 391 | 4 | 1 | 7626 | 76.28 | | Tundra | 0 | 25 | 78 | 153 | 805 | 2 | 0 | 61 | 0 | 0 | 1124 | 71.62 | | Wetland | 10 | 74 | 136 | 100 | 14 | 946 | 1 | 23 | 30 | 0 | 1334 | 70.91 | | Impervious | 20 | 6 | 11 | 28 | 0 | 1 | 902 | 5 | 0 | 0 | 973 | 92.70 | | Barren | 66 | 5 | 187 | 544 | 24 | 29 | 6 | 3882 | 3 | 13 | 4759 | 81.57 | | Water | 2 | 6 | 9 | 4 | 0 | 239 | 1 | 25 | 2328 | 0 | 2614 | 89.06 | | Ice-Snow | 0 | 1 | 1 | 33 | 0 | 0 | 0 | 5 | 1 | 1113 | 1154 | 96.45 | | Total | 9564 | 19754 | 6567 | 8558 | 888 | 1762 | 962 | 4559 | 2380 | 1127 | 56121 | | | P.A. | 88.27 | 92.85 | 62.30 | 67.97 | 90.65 | 53.69 | 93.76 | 85.15 | 97.82 | 98.76 | | | | O.A. | | | | | | | 83.16 | | | | | | | Kappa | | | | | | | 0.789 | | | | | | To intuitively understand the spatial distribution of the GLC_FCS10 accuracy metrics, Fig. 4 presents the spatial variations of O.A. and the kappa coefficient among 30 climate zones from Köppen climate zones. There is high consistency of the O.A. and kappa coefficient within the spatial patterns, i.e., some climatic transition zones, land-cover heterogeneity zones, cloud-contaminated tropical zones, and small subdivisions tend to have lower accuracy (below 80%). Conversely, some homogeneous zones (such as Greenland and the Sahara Desert) and forest- or cropland-rich zones (such as the east-central United States, central Eurasia, and East Asia) achieve the high O.A. and kappa coefficient. **Figure 4**. (a) Regional O.A. and (b) kappa coefficient of the GLC_FCS10 land-cover maps among various Köppen climate zones (http://koeppen-geiger.vu-wien.ac.at/) using the globally distributed validation points. 422 426 427 428 429 430 431 432 408 Table 4 further analyzes the confusion matrix between GLC FCS10 and the global validation dataset with 16 409 land-cover types (refining the forest and cropland subcategories). Under this fine classification system, the 410 GLC_FCS10 achieves an O.A. of 76.45% and a kappa coefficient of 0.736, which are reduced by 6.71% and 0.053, 411 respectively, from the metrics in Table 3. This reduction is due to confusion between the finer land-cover 412 subcategories; e.g., forests have a U.A. value of 91.02% in Table 3, but when broken down into five forest 413 subcategories the average U.A. value drops to 68.52%. Taking mixed forest as an example, it has a low accuracy of 414 only 44.17%, of which the proportions misclassified as evergreen broadleaved forest (EBF), deciduous broadleaved 415 forest (DBF), evergreen needleleaved forest (ENF), and deciduous needleleaved forest (DNF) are 5.34%, 7.77%, 416 27.18%, and 5.83%, respectively. Higher likelihoods of confusion exist for closely related land-cover subcategories; 417 e.g., the highest proportion of misclassification in EBF is in DBF, and rainfed cropland is easily misclassified as 418 irrigated cropland, shrubland, or grassland. Previous research also demonstrated that considerable misclassifications occur between similar land-cover types (Homer et al., 2020; Wickham et al., 2021; Zhang et al., 2021; Zhang et al., 419 420 2024c). **Table 4.** The confusion matrix between GLC_FCS10 and the globally distributed validation dataset for 16 land-cover types. | | RCP | ICP | EBF | DBF | ENF | DNF | MF | SHB | GRS | LMS | SPV | WET | IMP | BAL | WTR | SNW | Total | U.A. | |-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | RCP | 7575 | 302 | 134 | 137 | 21 | 13 | 6 | 574 | 746 | 0 | 10 | 24 | 31 | 35 | 6 | 0 | 9614 | 78.79 | | ICP | 121 | 444 | 19 | 7 | 2 | 0 | 0 | 14 | 22 | 0 | 1 | 29 | 8 | 0 | 3 | 0 | 670 | 66.27 | | EBF | 138 | 0 | 7263 | 842 | 289 | 59 | 48 | 429 | 70 | 0 | 0 | 140 | 1 | 1 | 2 | 0 | 9282 | 78.25 | | DBF | 21 | 1 | 375 | 3955 | 235 | 149 | 61 | 482 | 52 | 0 | 0 | 40 | 0 | 1 | 0 | 0 | 5372 | 73.62 | | ENF | 0 | 0 | 191 | 129 | 2535 | 533 | 11 | 138 | 28 | 0 | 0 | 51 | 1 | 3 | 1 | 0 | 3621 | 70.01 | | DNF | 1 | 0 | 0 | 77 | 122 | 1278 | 4 | 127 | 37 | 0 | 1 | 16 | 0 | 6 | 1 | 0 | 1670 | 76.53 | | MF | 0 | 0 | 11 | 16 | 56 | 12 | 91 | 15 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 206 | 44.17 | | SHB | 184 | 6 | 60 | 440 | 52 | 140 | 9 | 4091 | 922 | 12 | 40 | 72 | 4 | 69 | 1 | 0 | 6102 | 67.04 | | GRS | 654 | 19 | 24 | 109 | 21 | 98 | 3 | 275 | 5817 | 33 | 232 | 170 | 7 | 159 | 4 | 1 | 7626 | 76.28 | | LMS | 0 | 0 | 0 | 6 | 1 | 18 | 0 | 78 | 153 | 805 | 18 | 2 | 0 | 43 | 0 | 0 | 1124 | 71.62 | | SPV | 40 | 3 | 0 | 2 | 1 | 2 | 0 | 0 | 0 | 11 | 266 | 6 | 1 | 0 | 1 | 3 | 336 | 79.17 | | WET | 8 | 2 | 29 | 9 | 9 | 27 | 0 | 136 | 100 | 14 | 12 | 946 | 1 | 11 | 30 | 0 | 1334 | 70.91 | | IMP | 14 | 6 | 4 | 1 | 0 | 1 | 0 | 11 | 28 | 0 | 0 | 1 | 902 | 5 | 0 | 0 | 973 | 92.70 | | BAL | 20 | 3 | 0 | 0 | 0 | 0 | 0 | 187 | 544 | 13 | 118 | 23 | 5 | 3498 | 2 | 10 | 4423 | 79.09 | | WTR | 2 | 0 | 1 | 1 | 1 | 1 | 2 | 9 | 4 | 0 | 0 | 239 | 1 | 25 | 2328 | 0 | 2614 | 89.06 | | SNW | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 33 | 0 | 0 | 0 | 0 | 5 | 1 | 1113 | 1154 | 96.45 | | Total | 8778 | 786 | 8111 | 5732 | 3345 | 2331 | 235 | 6567 | 8558 | 888 | 698 | 1762 | 962 | 3861 | 2380 | 1127 | 56121 | | | P.A. | 86.30 | 56.49 | 89.55 | 69.00 | 75.78 | 54.83 | 38.72 | 62.30 | 67.97 | 90.65 | 38.11 | 53.69 | 93.76 | 90.60 | 97.82 | 98.76 | | | | O.A. | | | | | | | | | 76 | .45 | | | | | | | | | | Kappa | | | | | | | | | 0.7 | '36 | | | | | | | | | Note: RCP: rainfed cropland, ICP: irrigated cropland, EBF: evergreen broadleaved forest, DBF: deciduous broadleaved forest, ENF: evergreen needleleaved forest, DNF: deciduous needleleaved forest, MF: mixed forest, SHB: shrubland, GRS: grassland, LMS: lichens and mosses, SPV: sparse vegetation, WET: wetland, IMP: impervious surface, BAL: bare areas, WTR: water body, SNW: permanent ice and snow # 4.2.2 National-scale accuracy analysis using the LCMAP_Val datasets Table 5 presents the confusion matrix for GLC_FCS10 based on the LCMAP_Val validation points over the America. It should be noted that the LCMAP_Val dataset only contains eight land-cover types and merges shrubland and grassland into one mosaiced land-cover type (grass/shrub). The GLC_FCS10 achieves O.A. of 85.09% and a kappa coefficient of 0.804 using these 16082 national validation points. Regarding
the U.A. and P.A., the cropland, forest, water. and grass/shrub land-cover types achieve balanced U.A. and P.A. values approximating or exceeding 80%. In contrast, developed land has the lowest U.A. of 54.26% with high P.A. of 98.85%, mainly because of the difference in definitions of developed land and impervious surfaces. The LCMAP_Val definition of developed land is broad enough to classify inner-city greenery as developed land as well (Xian et al., 2022), which is considered a vegetation land-cover type in the GLC_FCS10. Barren land has the lowest P.A. value of 31.93%, indicating a high commission error of 68.07%. Most of these misclassifications came from the confusion between barren land and grass/shrub land-cover types. It is noteworthy that the grass/shrub shares similar spectral characteristics with barren, and both of them co-exist in arid regions of the western United States, thus, it is usually difficult to distinguish between the two with high accuracy. Table 5. The confusion matrix between GLC FCS10 and the LCMAP Val dataset. | | Cropland | Forest | Grass/Shrub | Wetland | Developed | Barren | Water | Ice & Snow | Total | U.A. | |-------------|----------|--------|-------------|---------|-----------|--------|-------|------------|-------|-------| | Cropland | 3445 | 28 | 393 | 6 | 0 | 9 | 2 | 0 | 3883 | 88.72 | | Forest | 7 | 4621 | 133 | 92 | 0 | 0 | 2 | 0 | 4855 | 95.18 | | Grass/Shrub | 368 | 358 | 3440 | 21 | 1 | 272 | 1 | 0 | 4461 | 77.11 | | Wetland | 37 | 260 | 30 | 522 | 1 | 0 | 5 | 0 | 855 | 61.05 | | Developed | 44 | 69 | 164 | 3 | 344 | 9 | 1 | 0 | 634 | 54.26 | | Barren | 1 | 0 | 0 | 10 | 0 | 137 | 1 | 0 | 149 | 91.95 | | Water | 0 | 2 | 1 | 63 | 2 | 1 | 1173 | 0 | 1242 | 94.44 | | Ice & Snow | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 3 | 66.67 | | Total | 3902 | 5338 | 4161 | 717 | 348 | 429 | 1185 | 2 | 16082 | | | P.A. | 88.29 | 86.57 | 82.67 | 72.80 | 98.85 | 31.93 | 98.99 | 100.00 | | | | O.A. | | | | | 85.09 | | | | | | | Kappa | | | | | 0.804 | | | | | | Figure 5 illustrates the spatial distribution of O.A. and kappa coefficient values among different Köppen climate zones using the LCMAP_Val validation points over the America. There is notable consistency between O.A. and kappa coefficient in terms of the spatial patterns, i.e., the GLC_FCS10 considerably outperforms the Western U.S. in the Eastern U.S. and has an optimal kappa coefficient of more than 0.8 in the Northeastern U.S. Combined with the climatic distribution, it performs relatively poorly in the arid and semi-arid zones of the Midwestern U.S., mainly attributed to the difficulty in distinguishing between shrubs, grasses, and bare land within the region. **Figure 5.** The spatial distributions of (a) O.A. and (b) kappa coefficient using the LCMAP_Val validation points over the America among various Köppen climate zones. # 4.3 Cross-comparisons with previous land-cover products Table 6 gives quantitative comparisons among GLC_FCS10 and four public global 10- or 30-m land-cover products using the LCMAP_Val dataset. The GLC_FCS10 achieves the highest O.A. of 85.09% and a kappa coefficient of 0.804, followed by the ESA WorldCover (82.34% and 0.760) and ESRI_LC (82.10% and 0.754), while the GLC_FCS30 and FROM_GLC10 have relatively inferior performance, below 80%. Specifically, in terms of the P.A., U.A. and F1-score, we can find that: 1) all five products achieve superior performance for water with corresponding P.A., U.A. and F1 score values of more than 90%. 2)The GLC_FCS10 and ESA WorldCover have advantages over other products for cropland and forest (with F1 scores exceeding 85%). The ESRI_LC F1 scores for cropland, forest, and grass/shrub exceed 80%. 3)All five products faced challenges for wetlands and barren land due to their complicated spectral characteristics. Taking wetlands as an example, the GLC_FCS10 achieves the highest F1 score of 66.63%, with most other products below 50%. The FROM_GLC10 has the lowest F1 score of 7.58%. 4) As stated in Section 4.2.2, the difference in definitions for developed land and impervious surfaces mean that all land-cover products have lower U.A. than P.A. values for developed land, i.e., they cannot identify inner-city greenery as impervious surfaces. Table 6. Comparisons among GLC FCS10 and four other comparative products using the LCMAP Val dataset. | | | Cropland | Forest | Grass/Shrub | Wetland | Developed | Barren | Water | Snow | O.A. | Kappa | |----------------|------|----------|--------|-------------|---------|-----------|--------|-------|-------|-------|-------| | | U.A. | 88.72 | 95.18 | 77.11 | 61.05 | 54.26 | 91.95 | 94.44 | 66.67 | | | | GLC_FCS10 | P.A. | 88.29 | 86.57 | 82.67 | 72.80 | 98.85 | 31.93 | 98.99 | 100.0 | 85.09 | 0.804 | | | F1 | 88.50 | 90.67 | 79.79 | 66.41 | 70.06 | 47.40 | 96.66 | 80.00 | | | | | U.A. | 71.14 | 87.13 | 73.70 | 4.02 | 41.64 | 90.50 | 96.03 | 100.0 | | | | FROM_GLC10 | P.A. | 89.17 | 82.42 | 73.47 | 66.00 | 85.31 | 9.30 | 98.34 | 50.00 | 74.31 | 0.653 | | | F1 | 79.14 | 84.71 | 73.58 | 7.58 | 55.96 | 16.87 | 97.17 | 66.67 | | | | | U.A. | 86.14 | 94.51 | 80.69 | 13.78 | 35.49 | 93.85 | 97.41 | 100.0 | | | | ESA WorldCover | P.A. | 93.09 | 82.00 | 85.15 | 88.28 | 97.20 | 14.38 | 98.93 | 75.00 | 82.34 | 0.760 | | | F1 | 89.48 | 87.81 | 82.86 | 23.84 | 52.00 | 24.94 | 98.16 | 85.71 | | | | | U.A. | 90.02 | 82.84 | 84.98 | 10.15 | 69.36 | 56.52 | 97.69 | 100.0 | | | | ESRI_LC | P.A. | 80.65 | 83.05 | 81.86 | 69.72 | 74.38 | 38.72 | 98.48 | 25.00 | 82.10 | 0.754 | | | F1 | 85.08 | 82.94 | 83.39 | 17.72 | 71.78 | 45.96 | 98.08 | 40.00 | | | | | U.A. | 85.78 | 88.85 | 75.29 | 37.68 | 38.10 | 73.49 | 90.79 | 100.0 | | | | GLC_FCS30 | P.A. | 77.39 | 74.69 | 84.47 | 56.09 | 91.70 | 20.08 | 98.14 | 75.00 | 77.76 | 0.699 | | _ | F1 | 81.37 | 81.16 | 79.62 | 45.08 | 53.83 | 31.54 | 94.32 | 85.71 | | | Figure 6 compares GLC_FCS10 with ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 on the East Coast of the United States. Overall, there is the highest consistency between GLC_FCS10 and actual land-cover situations, i.e., wetlands are predominantly found in low-lying river valleys and along the coast, and with a cross-section of forests and cropland due to the undulating topography. Conversely, ESA WorldCover has the largest forest area because some swamps or woody wetlands are labeled as forests (Fig. 6R1 is an enlargement showing an example). ESA WorldCover also has the smallest impervious surface area because some is misclassified as forest (Fig. 6R2 is an enlargement showing an example). Thus, ESA WorldCover has low U.A. values of 13.78% and 35.49% for wetland and developed land, respectively (Table 6). ESRI_LC has the largest impervious surface area and also identifies some swamps as forest, so it has the lowest P.A. value of 74.38% for developed land. ESRI_LC overestimates impervious surfaces and has obvious omission errors for swamps. FROM_GLC10 has the lowest wetland area, i.e., some swamps are classified as forest and herbaceous wetlands are labeled as water, so it has the lowest U.A. value of 4.02% for wetlands in Table 6. Last, GLC_FCS30 also has omission errors for wetlands (the red rectangle on GLC_FCS30) and lacks spatial details for some small objects (such as small rivers in Fig. 6R1). **Figure 6**. Comparisons among GLC_FCS10 and ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 on the East Coast of the United States. Images in the first column are false-color composited from time-series Sentinel-2 imagery. Figure 7 presents comparisons for the moddle reaches of the Yangtze River, China. All land-cover products accurately capture the regional spatial patterns, and GLC_FCS10 and GLC_FCS30 have advantages with the diversity of land-cover types over the other three products. Specifically, Fig. 7R1 illustrates cross-comparisons for the megacity of Wuhan. ESA WorldCover underestimates and has the lowest impervious surface area, ESRI_LC overestimates and has the highest impervious surface area, and FROM_GLC10 misclassifies some impervious surfaces as grassland (Huang et al., 2022). Based on the former comparison and previous works (Huang et al., 2022), the ESA WorldCover underestimates these low-density impervious surfaces, the ESRI_LC suffers the overestimation problem on the impervious surfaces, and FROM_GLC10 suffers some misclassification between impervious surfaces and grassland. Fig. 7R2 shows comparisons over the Payang Lake wetlands. ESA WorldCover captures most marsh wetlands but misses these lake/flooded flats, while ESRI_LC, FROM_GLC10, and GLC_FCS30 have serious omission errors for these wetlands. ESRI_LC misclassifies some marsh wetlands as grassland. Figure 7R3 illustrates comparisons for mountainous areas. ESRI_LC overestimates impervious surfaces, and GLC_FCS30 misses some small impervious surface objects (roads) due to spatial resolution constraints. **Figure 7**. Comparisons among GLC_FCS10 and ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 for the middle reaches of the Yangtze River, China. Images are derived from Sentinel-2 imagery using false-color compositing. The colormap of all land-cover products are same as in Fig. 6. Because land-cover mapping usually finds tropical areas challenging, Fig. 8 shows comparisons for Kalimantan Island, Indonesia. The region has experienced extensive deforestation and oil palm cultivation over the past few decades (Descals et al., 2024). GLC_FCS10, GLC_FCS30, and FROM_GLC10 can capture the spatial patterns of oil palms because they identify oil palms as cropland, while ESA WorldCover and ESRI_LC tend to treat oil palms as forest. Specifically, in Fig. 8R1, we can see more regular oil palm plantations due to human activities, while FROM_GLC10 and GLC_FCS30 might overestimate the cropland. ESRI_LC and FROM_GLC have serious omission errors on mangroves and swamps for the local region shown in Fig. 8R2, which contains swamp, mangrove, and oil palms, , while ESA WorldCover still cannot
identify these swamp wetlands and oil palms, and GLC_FCS30 is consistent with GLC_FCS10 in capturing the wetlands and oil palms. Figure 8. Comparisons between GLC FCS10 and ESA WorldCover, ESRI LC, GLC FCS30, and FROM GLC10 for Kalimantan Island, Indonesia. Images are derived from Sentinel-2 imagery in 2023, and the colormap is the same as in Fig. 6. #### 4.4 The feasibility and benefits of the proposed method for large-area land-cover mapping #### 4.4.1 The feasibility and advantages of globally derived training samples A principal difficulty of land-cover mapping is obtaining high-quality training samples (Li et al., 2023; Zhang et al., 2021), in this work, we integrate prior multisource global land-cover products to generate globally distributed training samples. To ensure the confidence of these derived training samples and minimize the classification errors of each prior product, we took the following actions: Spatiotemporal consistency checking was used to find homogeneous and stable areas. The intersection of multiple land-cover products minimized the influence of classification errors in each product. A morphological erosion filter was applied to reduce the impact of edge-mixing effects. The accuracy assessment partly demonstrates the reliability of these derived training samples, i.e., GLC_FCS10 achieves satisfactory accuracy metrics and outperforms several other land-cover products. Similarly, Zhang et al. (2021) also used the prior global land-cover products to generate the GLC_FCS30 product with satisfactory performance. Due to the large volume of these globally distributed training samples, we selected approximately 10,000 derived samples from the training sample pool in Section 3.2.4. Upon meticulous inspection, we determined that these chosen samples attained an Overall Accuracy (O.A.) of 92.18%, with certain uncertainties existing for shrubland and grassland. This result was in accordance with the earlier analysis presented in Table 3. Moreover, it is still uncertain whether this small amount of erroneous training samples could impact the performance of land-cover mapping, Fig. 9 illustrates the quantitative relationship between the erroneous training samples and the O.A. and kappa coefficients for the basic classification system. Initially, O.A. and the kappa coefficient remain stable as the number of erroneous training samples increases. However, a significant decline occurs when the proportion of erroneous samples exceeds 30%. This indicates that the trained random forest model is robust to the erroneous training samples as long as their proportion remains below 30%. In this work, if the fraction of erroneous samples was kept below 30%, the difference in O.A. is approximately 2% and the decrease in the kappa coefficient is approximately 3%. Gong et al. (2024) also demonstrated that a small number of incorrect samples (approximately 20%) didn't affect the land-cover classification accuracy. Figure 9. A sensitive analysis of kappa coefficient and O.A. with respect to the proportion of erroneous training samples. ### 4.4.2 The advantages of hierarchical land-cover mapping strategy One of the novelties of this study is the adoption of the hierarchical land-cover mapping strategy. The accuracy assessment in Table 3 indicates that impervious surfaces have a high U.A. value of 92.70% and P.A. value of 93.76%. The wetlands U.A. and P.A. values are 70.91% and 53.69%, which were superior to those of the other land-cover products in Table 6 and the cross-comparisons in Figs. 6–8. To intuitively understand the advantage of the hierarchical land-cover mapping strategy, a comparative experiment (*ComExp*) has been designed using the training samples from area-fraction allocation (Fig. 10), i.e., the impervious surfaces and wetlands are not classified separately in the middle reaches of the Yangtze River (the comparative site in Fig. 6). Overall, the *ComExp* is consistent with the GLC_FCS10 spatial patterns and shows some variations in the details. Specifically, in Fig. 10R1, the *ComExp* misclassifies some marsh wetlands as herbaceous rainfed cropland. Some lake flats (red rectangles in Fig. 10R1) cannot be comprehensively captured when compared with the GLC_FCS10. Figure 10R2 gives the comparisons on the impervious surface areas, we can find that the *ComExp* has lower impervious surface areas because it misclassifies some bright impervious surfaces as bare areas and some residential areas as vegetated land. In summary, the hierarchical land-cover mapping strategy can increase the ability to characterize specific land-cover types. <u>Sulla-Menashe et al. (2019)</u> also used hierarchical mapping to generate annual global land-cover types for MCD12Q1 and demonstrated its better performance. **Figure 10**. A comparative experiment on whether to adopt the hierarchical land-cover mapping strategy over the middle reaches of the Yangtze River. Images are composited from Sentinel-2 imagery, and the enlargement came from © Google Earth. The colormap is the same as in Fig. 6. #### 4.5 The limitations and prospects By combining a globally distributed training sample pool and the hierarchical land-cover mapping strategy, a novel GLC_FCS10 product containing 30 category-detailed land-cover types has been produced. GLC_FCS10 achieves more accurate performance than several previous products in quantitative and qualitative comparisons (Sections 4.2 and 4.3). However, there are still some limitations or uncertainties regarding the proposed method and the developed products, which will be addressed in our ongoing works. First, although we combined hierarchical land-cover mapping and multisource satellite observations to improve the recognition of complicated land-cover types (impervious surfaces and wetlands), however, it can be found that the accuracy metrics of shrubland, grassland and wetland still have substantial room for improvement. Recently, some efforts have shown that incorporating both climatic and land - form factors can enhance the discrimination of grassland areas (Parente et al., 2024) and the combination of Lidar and optical information increases the separability of shrubland and forest (Prošek and Šímová, 2019). Thus, one of the further works will combine multisource information to enhance the ability to recognize 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 complex land-cover types. We collected a globally distributed validation dataset and one third-party validation dataset (LCMAP_Val) for the purpose of quantifying the performance of the GLC_FCS10. However, the accuracy metrics of GLC_FCS10 for the fine classification system (containing 30 land-cover types) is still unknown. Actually, some previous studies have emphasized that collecting a large-area validation dataset is quite challenging (Tsendbazar et al., 2021; Xu et al., 2020), especially as this study also needed to focus on 30 fine land-cover types. Fortunately, over the past decades, many previous works have collected high-quality validation points at global or regional scales (d'Andrimont et al., 2020; Li et al., 2017; Stanimirova et al., 2023; Stehman et al., 2012; Zhao et al., 2023). Making full use of these prior knowledge bases to refine the globally distributed validation points into 30 fine land-cover types will be another focus for ongoing work. Last, in order to maximize the utilization of training samples distributed worldwide and strengthen the classification modeling capacity to capture regional characteristics, the local adaptive modeling strategy (Section 3.4) was applied in each 5×5 geographical tile, i.e., the global land-cover maps were produced as 984 independent local adaptive models. There may be a slight spatial discontinuity in some local land-cover maps between neighboring areas even though we introduced spatial neighborhood information into the regional modeling. Thus, further work will take some measures to join global and regional sample modeling to enhance the spatial continuity of global land-cover maps. ### 5. Data availability In this study, the novel GLC FCS10 land-cover dataset with the fine classification system in 2023 has been the Zenodo platform and can be visually visited https://zhangxiaoglcproj.users.earthengine.app/view/glcfcs102023maps freely and access https://doi.org/10.5281/zenodo.14729665 (Liu and Zhang, 2025). To facilitate the use of this dataset, the global GLC FCS10 dataset has been stored by a total of 983 independent 5 ×5 geographical tiles, and the tile names as "GLC_FCS10_2023_E/W***N/S##," in which the "***" and "##" illustrate coordinates of longitude and latitude at the upper - left corner of the tile data. As the collection of global validation dataset is labor intensive and time-consuming, our globally distributed validation dataset in 2023 will be available upon reasonable request. ### 6. Conclusion The continuous improvement of satellite techniques and computational capability provides ample opportunity for high-resolution global land-cover mapping. In this work, we proposed a framework that leverages prior multisource land-cover products, hierarchical land-cover mapping, and local adaptive classification to generate a novel GLC_FCS10 global land-cover product containing 30 fine land-cover types in 2023 from time-series Sentinel-1 and Sentinel-2 imagery on the GEE platform. The GLC_FCS10 was validated to achieve an O.A. of 83.16% and a kappa coefficient of 0.789 using 56121 globally distributed validation points and achieved an O.A. of 85.09% in the United States using a third-party validation dataset. Furthermore, cross-comparisons with several public global high-resolution land-cover products also demonstrated that GLC_FCS10 had advantages on the diversity of land-cover types and capturing spatial details. Therefore, the GLC_FCS10 is a novel global 10-m
land-cover product with high accuracy and a fine classification system. It can provide vital support for high-resolution land-cover applications. ### Acknowledgment - We extend our sincere gratitude to all the data providers and organizations whose datasets have been utilized in our - 612 research paper, the cloud computing power provided by GEE, and the free storage services offered by the Zenodo - 613 platform. #### 614 **Author contributions** - 615 The concept and investigation of the project were carried out by LL and XZ. XZ and XC devised the research - 616 methodology. TZ, WZ, and MB were responsible for conducting the validation. XZ took the lead in drafting the initial - version of the paper. LL and LG engaged in the review and editing process of the paper. ### 618 Financial support - This research was supported by the National Key Research and Development Program of China (2024YFF0808301) - and the National Natural Science Foundation of China (42201499). #### 621 Competing interests The corresponding author has declared that none of the authors have any competing interests. #### References 623 - 624 Azzari, G. and Lobell, D. B.: Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover - 625 monitoring, Remote Sensing of Environment, 202, 64-74, https://doi.org/10.1016/j.rse.2017.05.025, 2017. - Ban, Y., Gong, P., and Giri, C.: Global land cover mapping using Earth observation satellite data: Recent progresses and - 627 challenges, ISPRS Journal of Photogrammetry and Remote Sensing, 103, 1-6, - 628 https://doi.org/10.1016/j.isprsjprs.2015.01.001, 2015. - 629 Belgiu, M. and Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS Journal - 630 of Photogrammetry and Remote Sensing, 114, 24-31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016. - 631 Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., and Hanssen, R. F.: ESA's sentinel missions in support of Earth - 632 system science, Remote Sensing of Environment, 120, 84-90, https://doi.org/10.1016/j.rse.2011.07.023, 2012. - 633 Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., and Hostert, P.: Mapping of crop types and - 634 crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany, Remote Sensing of - 635 Environment, 269, 112831, https://doi.org/10.1016/j.rse.2021.112831, 2022. - 636 Breiman, L.: Random Forests, Machine Learning, 45, 5-32, https://doi.org/10.1023/A:1010933404324, 2001. - 637 Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. - J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., and Tait, A. M.: - 639 Dynamic World, Near real-time global 10 m land use land cover mapping, Scientific Data, 9, - 640 https://doi.org/10.1038/s41597-022-01307-4, 2022. - 641 Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets, B.: Copernicus Global Land Cover - 642 Layers—Collection 2, Remote Sensing, 12, 1044, https://doi.org/10.3390/rs12061044, 2020. - 643 Bullock, E. L., Healey, S. P., Yang, Z., Houborg, R., Gorelick, N., Tang, X., and Andrianirina, C.: Timeliness in forest - change monitoring: A new assessment framework demonstrated using Sentinel-1 and a continuous change detection - algorithm, Remote Sensing of Environment, 276, 113043, https://doi.org/10.1016/j.rse.2022.113043, 2022. - Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, - 647 N. J., and Rebelo, L.-M.: Global Mangrove Extent Change 1996-2020: Global Mangrove Watch Version 3.0, Remote - 648 Sensing, 14, 3657, https://doi.org/10.3390/rs14153657, 2022. - 649 Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, - 650 J.: Global land cover mapping at 30m resolution: A POK-based operational approach, ISPRS Journal of Photogrammetry - and Remote Sensing, 103, 7-27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015. - d'Andrimont, R., Verhegghen, A., Meroni, M., Lemoine, G., Strobl, P., Eiselt, B., Yordanov, M., Martinez-Sanchez, L., and - 653 van der Velde, M.: LUCAS Copernicus 2018: Earth Observation relevant in-situ data on land cover throughout the - European Union, https://doi.org/10.5194/essd-2020-178, 2020. - 655 Dabrowska-Zielinska, K., Musial, J., Malinska, A., Budzynska, M., Gurdak, R., Kiryla, W., Bartold, M., and Grzybowski, - 656 P.: Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery, Remote Sensing, 10, 1979, - 657 https://doi.org/10.3390/rs10121979, 2018. - 658 Defourny, P., Kirches, G., Brockmann, C., Boettcher, M., Peters, M., Bontemps, S., Lamarche, C., Schlerf, M., and M., S.: - Land Cover CCI: Product User Guide Version 2, 2018. 2018. - 660 Descals, A., Gaveau, D. L. A., Wich, S., Szantoi, Z., and Meijaard, E.: Global mapping of oil palm planting year from 1990 - 661 to 2021, Earth Syst. Sci. Data, 16, 5111-5129, https://doi.org/10.5194/essd-16-5111-2024, 2024. - 662 Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J., and Moore, B.: - Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based - defaultion algorithms, Remote Sensing of Environment, 160, 99-113, https://doi.org/10.1016/j.rse.2015.01.004, 2015. - Du, P., Samat, A., Waske, B., Liu, S., and Li, Z.: Random Forest and Rotation Forest for fully polarized SAR image - classification using polarimetric and spatial features, Isprs Journal of Photogrammetry & Remote Sensing, 105, 38-53, - 667 https://doi.org/10.1016/j.isprsjprs.2015.03.002, 2015. - Du, Z., Yu, L., Yang, J., Xu, Y., Chen, B., Peng, S., Zhang, T., Fu, H., Harris, N., and Gong, P.: A global map of planting - years of plantations, Scientific Data, 9, https://doi.org/10.1038/s41597-022-01260-2, 2022. - 670 Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., - 671 Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., - 672 Ramankutty, N., and Snyder, P. K.: Global consequences of land use, Science, 309, 570-574, - 673 https://doi.org/10.1126/science.1111772, 2005. - 674 Foody, G. M. and Arora, M. K.: An evaluation of some factors affecting the accuracy of classification by an artificial neural - 675 network, International Journal of Remote Sensing, 18, 799-810, https://doi.org/10.1080/014311697218764, 2010. - 676 Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 - 677 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, 114, 168- - 678 182, https://doi.org/10.1016/j.rse.2009.08.016, 2010. - 679 Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., and Hasanlou, M.: Improved land cover map - 680 of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification - using migrated training samples, ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276-288, - 682 https://doi.org/10.1016/j.isprsjprs.2020.07.013, 2020. - 683 Giri, C., Pengra, B., Long, J., and Loveland, T. R.: Next generation of global land cover characterization, mapping, and - 684 monitoring, International Journal of Applied Earth Observation and Geoinformation, 25, 30-37, - 685 https://doi.org/10.1016/j.jag.2013.03.005, 2013. - 686 Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R.: Random Forests for land cover classification, Pattern Recognition - 687 Letters, 27, 294-300, https://doi.org/10.1016/j.patrec.2005.08.011, 2006. - 688 Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., - 689 Yuan, C., Ping Suen, H., Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., - 690 Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song, L.: Stable classification with limited sample: transferring a 30-m resolution - 691 sample set collected in 2015 to mapping 10-m resolution global land cover in 2017, Science Bulletin, 64, 370-373, - 692 https://doi.org/10.1016/j.scib.2019.03.002, 2019. - 693 Gong, P., Wang, J., and Huang, H.: Stable classification with limited samples in global land cover mapping: Theory and - 694 experiments, Science Bulletin, https://doi.org/10.1016/j.scib.2024.03.040, 2024. - 695 Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., ### © Author(s) 2025. CC BY 4.0 License. - 696 Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y., Chen, - 697 H., Yan, A., Guo, J., Yu, L., Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C., Clinton, N., - 698 Zhu, Z., Chen, J., and Chen, J.: Finer resolution observation and monitoring of global land cover: first mapping results with - 699 Landsat TM and ETM+ data, International Journal of Remote Sensing, 34, 2607-2654, - 700 https://doi.org/10.1080/01431161.2012.748992, 2013. - Hansen, M. C., Egorov, A., Potapov, P. V., Stehman, S. V., Tyukavina, A., Turubanova, S. A., Roy, D. P., Goetz, S. J., - 702 Loveland, T. R., Ju, J., Kommareddy, A., Kovalskyy, V., Forsyth, C., and Bents, T.: Monitoring conterminous United States - 703 (CONUS) land cover change with Web-Enabled Landsat Data (WELD), Remote Sensing of Environment, 140, 466-484, - 704 https://doi.org/10.1016/j.rse.2013.08.014, 2014. - Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, - 706 R., and Riitters, K.:
Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover - 707 Database, ISPRS Journal of Photogrammetry and Remote Sensing, 162, 184-199, - 708 https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020. - Huang, X., Song, Y., Yang, J., Wang, W., Ren, H., Dong, M., Feng, Y., Yin, H., and Li, J.: Toward accurate mapping of 30- - 710 m time-series global impervious surface area (GISA), International Journal of Applied Earth Observation and - 711 Geoinformation, 109, 102787, https://doi.org/10.1016/j.jag.2022.102787, 2022. - 712 Jin, H., Stehman, S. V., and Mountrakis, G.: Assessing the impact of training sample selection on accuracy of an urban - 713 classification: a case study in Denver, Colorado, International Journal of Remote Sensing, 35, 2067-2081, - 714 https://doi.org/10.1080/01431161.2014.885152, 2014. - 715 Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., and Brumby, S. P.: Global land use / land cover - 716 with Sentinel 2 and deep learning, 4704-4707, https://doi.org/10.1109/igarss47720.2021.9553499, 2021. - 717 Li, B., Xu, X., Liu, X., Shi, Q., Zhuang, H., Cai, Y., and He, D.: An improved global land cover mapping in 2015 with - 718 30 m resolution (GLC-2015) based on a multisource product-fusion approach, Earth Syst. Sci. Data, 15, 2347- - 719 2373, https://doi.org/10.5194/essd-15-2347-2023, 2023. - 720 Li, C., Peng, G., Wang, J., Zhu, Z., Biging, G. S., Yuan, C., Hu, T., Zhang, H., Wang, Q., and Li, X.: The first all-season - 721 sample set for mapping global land cover with Landsat-8 data, Science Bulletin, 62, 508-515, - 722 https://doi.org/10.1016/j.scib.2017.03.011, 2017. - 723 Li, X., Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao, Y., Xu, B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, - 724 T., Wang, X., Lin, P., Li, X., Chen, J., He, C., Li, X., Yu, L., Clinton, N., and Zhu, Z.: Mapping global urban boundaries - 725 from the global artificial impervious area (GAIA) data, Environmental Research Letters, 15, 094044, - 726 https://doi.org/10.1088/1748-9326/ab9be3, 2020. - 727 Liu, C., Frazier, P., and Kumar, L.: Comparative assessment of the measures of thematic classification accuracy, Remote - 728 Sensing of Environment, 107, 606-616, https://doi.org/10.1016/j.rse.2006.10.010, 2007. - 729 Liu, L. and Zhang, X.: GLC FCS10: global 10 m land-cover dataset with fine classification sys tem from Sentinel-1 and - 730 2 time-series data, Zenodo [data set]. Zenodo, https://doi.org/10.5281/zenodo.14729665, 2025. - 731 Liu, L., Zhang, X., Gao, Y., Chen, X., Shuai, X., and Mi, J.: Finer-Resolution Mapping of Global Land Cover: Recent - 732 Developments, Consistency Analysis, and Prospects, Journal of Remote Sensing, 2021, 1-38, - 733 https://doi.org/10.34133/2021/5289697, 2021. - 734 Mellor, A., Boukir, S., Haywood, A., and Jones, S.: Exploring issues of training data imbalance and mislabelling on random - 735 forest performance for large area land cover classification using the ensemble margin, ISPRS Journal of Photogrammetry - 736 and Remote Sensing, 105, 155-168, https://doi.org/10.1016/j.isprsjprs.2015.03.014, 2015. - 737 Nelson, M. D., Garner, J. D., Tavernia, B. G., Stehman, S. V., Riemann, R. I., Lister, A. J., and Perry, C. H.: Assessing map - 738 accuracy from a suite of site-specific, non-site specific, and spatial distribution approaches, Remote Sensing of - 739 Environment, 260, 112442, https://doi.org/10.1016/j.rse.2021.112442, 2021. - 740 Parente, L., Sloat, L., Mesquita, V., Consoli, D., Stanimirova, R., Hengl, T., Bonannella, C., Teles, N., Wheeler, I., Hunter, - 741 M., Ehrmann, S., Ferreira, L., Mattos, A. P., Oliveira, B., Meyer, C., Şahin, M., Witjes, M., Fritz, S., Malek, Z., and Stolle, - 742 F.: Annual 30-m maps of global grassland class and extent (2000-2022) based on spatiotemporal Machine Learning, - 743 Scientific Data, 11, https://doi.org/10.1038/s41597-024-04139-6, 2024. - 744 Pelletier, C., Valero, S., Inglada, J., Champion, N., Marais Sicre, C., and Dedieu, G.: Effect of Training Class Label Noise - 745 on Classification Performances for Land Cover Mapping with Satellite Image Time Series, Remote Sensing, 9, 173, - 746 https://doi.org/10.3390/rs9020173, 2017. - 747 Prošek, J. and Šímová, P.: UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived - 748 from a single sensor increase the classification accuracy?, International Journal of Applied Earth Observation and - 749 Geoinformation, 75, 151-162, https://doi.org/10.1016/j.jag.2018.10.009, 2019. - 750 Radeloff, V. C., Roy, D. P., Wulder, M. A., Anderson, M., Cook, B., Crawford, C. J., Friedl, M., Gao, F., Gorelick, N., - 751 Hansen, M., Healey, S., Hostert, P., Hulley, G., Huntington, J. L., Johnson, D. M., Neigh, C., Lyapustin, A., Lymburner, L., - 752 Pahlevan, N., Pekel, J.-F., Scambos, T. A., Schaaf, C., Strobl, P., Woodcock, C. E., Zhang, H. K., and Zhu, Z.: Need and - vision for global medium-resolution Landsat and Sentinel-2 data products, Remote Sensing of Environment, 300, 113918, - 754 https://doi.org/10.1016/j.rse.2023.113918, 2024. - 755 Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., Brockmann, C., and Defourny, P.: Automated Training Sample - 756 Extraction for Global Land Cover Mapping, Remote Sensing, 6, 3965-3987, https://doi.org/10.3390/rs6053965, 2014. - 757 Rodriguez-Galiano, V. F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M., and Jeganathan, C.: Random Forest - 758 classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture, Remote Sensing of - 759 Environment, 121, 93-107, https://doi.org/10.1016/j.rse.2011.12.003, 2012. - 760 Stanimirova, R., Tarrio, K., Turlej, K., McAvoy, K., Stonebrook, S., Hu, K. T., Arevalo, P., Bullock, E. L., Zhang, Y., - 761 Woodcock, C. E., Olofsson, P., Zhu, Z., Barber, C. P., Souza, C. M., Jr., Chen, S., Wang, J. A., Mensah, F., Calderon-Loor, - M., Hadjikakou, M., Bryan, B. A., Graesser, J., Beyene, D. L., Mutasha, B., Siame, S., Siampale, A., and Friedl, M. A.: A - 763 global land cover training dataset from 1984 to 2020, Sci Data, 10, 879, https://doi.org/10.1038/s41597-023-02798-5, 2023. - 764 Stehman, S. V., Olofsson, P., Woodcock, C. E., Herold, M., and Friedl, M. A.: A global land-cover validation data set, II: - 765 augmenting a stratified sampling design to estimate accuracy by region and land-cover class, International Journal of - Remote Sensing, 33, 6975-6993, https://doi.org/10.1080/01431161.2012.695092, 2012. - 767 Stehman, S. V., Pengra, B. W., Horton, J. A., and Wellington, D. F.: Validation of the U.S. Geological Survey's Land Change - Monitoring, Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985–2017, Remote Sensing - $769 \qquad of \ Environment, 265, 112646, https://doi.org/10.1016/j.rse. 2021. 112646, 2021.$ - 770 Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover - 771 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sensing of Environment, 222, 183-194, - 772 https://doi.org/10.1016/j.rse.2018.12.013, 2019. - 773 Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D. B., Oimoen, M. J., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., and - 774 Haase, J.: ASTER Global Digital Elevation Model Version 2 Summary of validation results, Kim Fakultas Sastra Dan - Budaya, https://doi.org/10.1093/oxfordjournals.pubmed.a024792, 2011. - 776 Tang, X., Bratley, K. H., Cho, K., Bullock, E. L., Olofsson, P., and Woodcock, C. E.: Near real-time monitoring of tropical - forest disturbance by fusion of Landsat, Sentinel-2, and Sentinel-1 data, Remote Sensing of Environment, 294, 113626, - 778 https://doi.org/10.1016/j.rse.2023.113626, 2023. - 779 Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., - 780 Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R., Pietropaolo, A., - 781 Huchler, M., and Rostan, F.: GMES Sentinel-1 mission, Remote Sensing of Environment, 120, 9-24, - 782 https://doi.org/10.1016/j.rse.2011.05.028, 2012. - 783 Tsendbazar, N., Herold, M., Li, L., Tarko, A., de Bruin, S., Masiliunas, D., Lesiv, M., Fritz, S., Buchhorn, M., Smets, B., - Van De Kerchove, R., and Duerauer, M.: Towards operational validation of annual global land cover maps, Remote Sensing - 785 of Environment, 266, 112686, https://doi.org/10.1016/j.rse.2021.112686, 2021. - 786 Wang, Y., Sun, Y., Cao, X., Wang, Y., Zhang, W., and Cheng, X.: A review of regional and Global scale Land Use/Land - 787 Cover (LULC) mapping products generated from satellite remote sensing, ISPRS Journal of Photogrammetry and Remote - 788 Sensing, 206, 311-334, https://doi.org/10.1016/j.isprsjprs.2023.11.014, 2023. - 789 Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., and Dewitz, J. A.: Thematic accuracy assessment of the NLCD - 790 2016 land cover for the conterminous United States, Remote Sensing of Environment, 257, 112357, - 791 https://doi.org/10.1016/j.rse.2021.112357, 2021. - 792 Wilen, B. O. and Bates, M.: The US fish and wildlife service's national wetlands inventory project. In: Classification and - 793 inventory of the world's wetlands, Springer, https://doi.org/10.1007/978-94-011-0427-2_13, 1995. - 794 Worthington, T. A., Spalding, M., Landis, E., Maxwell, T. L., Navarro, A., Smart, L. S., and Murray, N. J.: The distribution - 795 of global tidal marshes from Earth observation data, Global Ecology and Biogeography, https://doi.org/10.1111/geb.13852, - 796 2024. - 797 Xian, G. Z., Smith, K., Wellington, D., Horton, J., Zhou, Q., Li, C., Auch, R., Brown, J. F., Zhu, Z., and Reker, R. R.: - 798 Implementation of the CCDC algorithm to produce the LCMAP Collection 1.0 annual land surface change product, Earth - 799 Syst. Sci. Data, 14, 143-162, https://doi.org/10.5194/essd-14-143-2022, 2022.
- 800 Xie, S., Liu, L., and Yang, J.: Time-Series Model-Adjusted Percentile Features: Improved Percentile Features for Land- - 801 Cover Classification Based on Landsat Data, Remote Sensing, 12, 3091, https://doi.org/10.3390/rs12183091, 2020. - 802 Xu, P., Herold, M., Tsendbazar, N.-E., and Clevers, J. G. P. W.: Towards a comprehensive and consistent global aquatic - land cover characterization framework addressing multiple user needs, Remote Sensing of Environment, 250, 112034, - 804 https://doi.org/10.1016/j.rse.2020.112034, 2020. - Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst. Sci. - 806 Data, 13, 3907-3925, https://doi.org/10.5194/essd-13-3907-2021, 2021. - 807 Yu, L., Wang, J., Li, X., Li, C., Zhao, Y., and Gong, P.: A multi-resolution global land cover dataset through multisource - 808 data aggregation, Science China Earth Sciences, 57, 2317-2329, https://doi.org/10.1007/s11430-014-4919-z, 2014. - Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., - 810 Paccini, A., and Vergnaud, S.: ESA WorldCover 10 m 2020 v100, Zenodo: Geneve, Switzerland, - 811 https://doi.org/10.5281/zenodo.5571936, 2021. - 812 Zhang, H. K. and Roy, D. P.: Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m - Landsat land cover classification, Remote Sensing of Environment, 197, 15-34, https://doi.org/10.1016/j.rse.2017.05.024, - 814 2017. - 815 Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification - system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753-2776, https://doi.org/10.5194/essd-13- - 817 2753-2021, 2021. - 818 Zhang, X., Liu, L., Wang, J., Zhao, T., Liu, W., and Chen, X.: Automated Mapping of Global 30-m Tidal Flats Using Time- - 819 Series Landsat Imagery: Algorithm and Products, Journal of Remote Sensing, 3, - 820 https://doi.org/10.34133/remotesensing.0091, 2023a. - 821 Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., and Zhang, B.: Development of a global 30 m impervious surface - 822 map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform, Earth Syst. Sci. - 823 Data, 12, 1625-1648, https://doi.org/10.5194/essd-12-1625-2020, 2020. - 824 Zhang, X., Liu, L., Zhang, W., Guan, L., Bai, M., Zhao, T., Zhehua, L., and Chen, X.: Tracking gain and loss of impervious - 825 surfaces by integrating continuous change detection and multitemporal classifications from 1985 to 2022 in Beijing, - 826 International Journal of Applied Earth Observation and Geoinformation, 135, 104268, - 827 https://doi.org/10.1016/j.jag.2024.104268, 2024a. # https://doi.org/10.5194/essd-2025-73 Preprint. Discussion started: 20 March 2025 # © Author(s) 2025. CC BY 4.0 License. - 828 Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., and Liu, W.: GWL_FCS30: a global 30 m wetland map - 829 with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020, Earth Syst. Sci. Data, - 830 15, 265-293, https://doi.org/10.5194/essd-15-265-2023, 2023b. - 831 Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., and Mi, J.: GISD30: global 30 m impervious-surface dynamic dataset from - 832 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform, Earth Syst. Sci. Data, 14, 1831- - 833 1856, https://doi.org/10.5194/essd-14-1831-2022, 2022. - 834 Zhang, X., Liu, L., Zhao, T., Wang, J., Liu, W., and Chen, X.: Global annual wetland dataset at 30 m with a fine - 835 classification system from 2000 to 2022, Scientific Data, 11, https://doi.org/10.1038/s41597-024-03143-0, 2024b. - 836 Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., and Liu, L.: GLC FCS30D: the first global 30 m land-cover - 837 dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense- - 838 time-series Landsat imagery and the continuous change-detection method, Earth Syst. Sci. Data, 16, 1353-1381, - 839 https://doi.org/10.5194/essd-16-1353-2024, 2024c. - 840 Zhao, T., Zhang, X., Gao, Y., Mi, J., Liu, W., Wang, J., Jiang, M., and Liu, L.: Assessing the Accuracy and Consistency of - 841 Six Fine-Resolution Global Land Cover Products Using a Novel Stratified Random Sampling Validation Dataset, Remote - 842 Sensing, 15, 2285, https://doi.org/10.3390/rs15092285, 2023. - 843 Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P., Loveland, T. R., Jin, S., Dahal, D., Yang, L., and Auch, - 844 R. F.: Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative, - ISPRS Journal of Photogrammetry and Remote Sensing, 122, 206-221, https://doi.org/10.1016/j.isprsjprs.2016.11.004, - 846 2016. 847